If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+20b=96^2
We move all terms to the left:
b^2+20b-(96^2)=0
We add all the numbers together, and all the variables
b^2+20b-9216=0
a = 1; b = 20; c = -9216;
Δ = b2-4ac
Δ = 202-4·1·(-9216)
Δ = 37264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37264}=\sqrt{16*2329}=\sqrt{16}*\sqrt{2329}=4\sqrt{2329}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{2329}}{2*1}=\frac{-20-4\sqrt{2329}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{2329}}{2*1}=\frac{-20+4\sqrt{2329}}{2} $
| b^2=20b=96^2 | | 5x+13+4x=-5 | | b2+20b=96^2 | | 1/2*n=10 | | 2-3x=x+2= | | (r+1.91)/(-1)=-0.49 | | -2m=-9-2m | | 8x-3=-8x | | -2+2x=-x+2+x= | | (m+4.87)/3=2.66 | | 2/3x+1/3=1/5 | | 119-8m=95 | | 6x-5=8+7x | | (2x+12)+(x-4)=0 | | 2/8x-7=x | | 3(2x-2)=-7 | | 15=4x+7x-7 | | -2x=9x-15 | | t÷4-3=11 | | 2(5x-6)=-3(-3x-4) | | 5v-0.11=3.99 | | 7x-2+4x+16=180 | | -3+5(x+6)=12 | | -2(3-x)+10=5(4x-6)-2(x=1) | | 18-3=8a-5+2a | | (h+389)/(-4)=7 | | (u+3)10=80 | | 12(r-976)=96 | | 12(r−976)=96 | | .75(8+e)=2-1*25e | | -8(s+962)=-736 | | 15=5x-30 |